An inexact modified subgradient algorithm for nonconvex optimization
نویسندگان
چکیده
منابع مشابه
An inexact modified subgradient algorithm for nonconvex optimization
We propose and analyze an inexact version of the modified subgradient (MSG) algorithm, which we call the IMSG algorithm, for nonsmooth and nonconvex optimization over a compact set. We prove that under an approximate, i.e. inexact, minimization of the sharp augmented Lagrangian, the main convergence properties of the MSG algorithm are preserved for the IMSG algorithm. Inexact minimization may a...
متن کاملAn approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization
In this paper a new algorithm for minimizing locally Lipschitz functions is developed. Descent directions in this algorithm are computed by solving a system of linear inequalities. The convergence of the algorithm is proved for quasidifferentiable semismooth functions. We present the results of numerical experiments with both regular and nonregular objective functions. We also compare the propo...
متن کاملAn inexact Newton method for nonconvex equality constrained optimization
We present a matrix-free line search algorithm for large-scale equality constrained optimization that allows for inexact step computations. For strictly convex problems, the method reduces to the inexact sequential quadratic programming approach proposed by Byrd et al. [SIAM J. Optim. 19(1) 351–369, 2008]. For nonconvex problems, the methodology developed in this paper allows for the presence o...
متن کاملInexact subgradient methods for quasi-convex optimization problems
In this paper, we consider a generic inexact subgradient algorithm to solve a nondifferentiable quasi-convex constrained optimization problem. The inexactness stems from computation errors and noise, which come from practical considerations and applications. Assuming that the computational errors and noise are deterministic and bounded, we study the effect of the inexactness on the subgradient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2008
ISSN: 0926-6003,1573-2894
DOI: 10.1007/s10589-008-9168-7